Skip to content

LPS evaluation

Evaluation methods

evaluate methods

To assess imputation performance, two key metrics are used: Imputation Accuracy and Imputation Coverage. These metrics quantify the quality and completeness of imputed genetic variants, and are calculated per chromosome across all autosomes.

Metric Description Purpose
Imputation Accuracy Mean \(r^2\) of sites within a bin Measures how well imputed values match true genotypes
Imputation Coverage Proportion of variants with \(r^2 \geq 0.8\) in a bin Assesses the proportion of high-confidence imputations

Evaluation process

Input data

  • restructed lpWGS VCFs
  • restructed SNP-array VCFs
  • True VCFs

Code

1
2
3
4
5
6
    compute_MAF.sh chr${i}_${pop}_true.vcf.gz maf.txt

    run_evaluate.py --true_vcf chr${i}_${pop}_true.vcf.gz \
                    --imputed_vcf ${imputed_vcf} \
                    --af maf.txt \
                    --out_snp_wise chr${i}_${lps_cov}_${pop}_snp_wise.acc

Code

1
2
3
  get_coverage.py --input ${res_snp_wise} \
                  --cov perbin_${res_snp_wise}_cov.txt \
                  --acc perbin_${res_snp_wise}_mean_r2.txt 

Output

Evaluation process output:

LPS Pseudo array
SNP-wise accuracy lps_all_acc.txt array_all_acc.txt
Imputation accuracy lps_all_cov.txt array_all_cov.txt